## What if there is no solution to a problem?

“If there is no solution to the problem then **don’t waste time worrying about it**. If there is a solution to the problem then don’t waste time worrying about it.”

## Can every problem be solved?

You may not believe it, but **every problem can be solved**. Of course the logical, mathematical, or cognitive problems will always have a correct answer, but what about those non-logical, non-linear problems?

## What does the solution mean in the context of the problem?

**A value, or values, we can put in place of a variable (such as x) that makes the equation true**. Example: x + 2 = 7. When we put 5 in place of x we get: 5 + 2 = 7. 5 + 2 = 7 is true, so x = 5 is a solution.

## Whats the difference between undefined and no solution?

**undefined would be when you simply cant do the math equation and get a cognizant answer for example 2 divided by zero.** **no solution is when an equation can have multiple answers** I believe. its more about graphing problems verses simple algebra.

## What is the meaning of no solution?

No solution would mean that **there is no answer to the equation**. It is impossible for the equation to be true no matter what value we assign to the variable. Infinite solutions would mean that any value for the variable would make the equation true. No Solution Equations.

## What is a system with no solution?

If a system has no solution, it is said to be **inconsistent** . The graphs of the lines do not intersect, so the graphs are parallel and there is no solution.

## How can you tell if an equation has no solution?

The constants are the numbers alone with no variables. **If the coefficients are the same on both sides then the sides will not equal**, therefore no solutions will occur.

## What is an example of no solution?

The last type of equation is known as a contradiction, which is also known as a No Solution Equation. This type of equation is never true, no matter what we replace the variable with. As an example, consider **3x + 5 = 3x – 5**. This equation has no solution.

## What does no solution look like?

When a problem has no solution you’ll end up with a statement that’s false. For example: **0=1** This is false because we know zero can’t equal one. Therefore we can conclude that the problem has no solution.

## How do you determine if an equation has no solution one solution or infinite solutions?

Quote:

*If you get something that looks like this zero equals zero five equals five or x equals x if the two sides are exactly the same then it's many solutions.*

## How do you solve a system of equations with no solution?

To create a no solution equation, we can need to **create a mathematical statement that is always false**. To do this, we need the variables on both sides of the equation to cancel each other out and have the remaining values to not be equal.

## How do you solve an equation with infinite solutions?

An infinite solution has both sides equal. For example, 6x + 2y – 8 = 12x +4y – 16. **If you simplify the equation using an infinite solutions formula or method, you’ll get both sides equal**, hence, it is an infinite solution.

## Do all equations have a solution?

**Sometimes equations have no solution**. This means that no matter what value is plugged in for the variable, you will ALWAYS get a contradiction.

## Does 0 equal no solution?

If you solve this your answer would be **0=0 this means the problem has an infinite number of solutions**. For an answer to have no solution both answers would not equal each other. Here is a problem that has no solution.